Define your IT Future with Continuous Cloud Infrastructure

It has become a daunting task for IT administrators to determine which, if any, cloud provider is right for their enterprise. This exclusive guide walks readers through the benefits of using public cloud services, how to weigh the pros and cons of each cloud provider, and more.

Spotlight

Clarke Telecom

Clarke Telecom carries out every aspect of wireless telecoms network infrastructure delivery. From acquisition, planning and design through to deployment and optimization, Clarke Telecom project manage network roll-out for the mobile phone companies in the UK. Clarke Telecom’s people are key to the success of the business; the company ensures that its employees possess the necessary knowledge and skills, and receive continuous training to offer the best expertise in the industry.

OTHER ARTICLES
Hyper-Converged Infrastructure

The importance of location intelligence and big data for 5G growth

Article | October 3, 2023

The pandemic has had a seismic impact on the telecom sector. This is perhaps most notably because where and how the world goes to work has been re-defined, with nearly every business deepening its commitment to mobility. Our homes suddenly became our offices, and workforces went from being centrally managed to widely distributed. This has called for a heightened need for widespread, secure and high-speed connectivity around the clock. 5G has answered the call, and 5G location intelligence and big data can provide service providers with the information they need to optimize their investments. Case in point: Juniper Research reported in its 5G Monetization study that global revenue from 5G services will reach $73 billion by the end of 2021, rising from just $20 billion last year. 5G flexes as connected devices surge Market insights firm IoT Analytics estimates there will be more than 30 billion IoT connections by 2025. That's an average of nearly four IoT devices per person. To help meet the pressure this growth in connectivity is putting on telecom providers, the Federal Communications Commission (FCC) is taking action to make additional spectrum available for 5G services and promoting the digital opportunities it provides to Americans. The FCC is urging that investments in 5G infrastructure be prioritized given the "widespread mobility opportunity" it presents, as stated by FCC Chairwoman Jessica Rosenworcel. While that's a good thing, we must also acknowledge that launching a 5G network presents high financial risk, among other challenges. The competitive pressures are significant, and network performance matters greatly when it comes to new business acquisition and retention. It's imperative to make wise decisions on network build-out to ensure investments yield the anticipated returns. Thus, telcos need not – and should not – go it blindly when considering where to invest. You don't know what you don't know, which is why 5G location intelligence and big data can provide an incredible amount of clarity (and peace of mind) when it comes to optimizing investments, increasing marketing effectiveness and improving customer satisfaction. Removing the blindfold Location data and analytics provide telcos and Communications Service Providers (CSPs) with highly-specific insights to make informed decisions on where to invest in 5G. With this information, companies can not only map strategic expansion, but also better manage assets, operations, customers and products. For example, with this intelligence, carriers can gain insight into the most desired locations of specific populations and how they want to use bandwidth. They can use this data to arm themselves with a clear understanding of customer location and mobility, mapping existing infrastructure and competitive coverage against market requirements to pinpoint new opportunities. By creating complex customer profiles rich with demographic information like age, income and lifestyle preferences, the guesswork is eliminated for where the telco should or shouldn’t deploy new 5G towers. Further, by mapping a population of consumers and businesses within a specific region and then aggregating that information by age, income or business type, for example, a vivid picture comes to life of the market opportunity for that area. This type of granular location intelligence adds important context to existing data and is a key pillar to data integrity, which describes the overall quality and completeness of a dataset. When telcos can clearly understand factors such as boundaries, movement and the customers’ surroundings, predictive insights can be made regarding demographic changes and future telecom requirements within a certain location. This then serves as the basis for a data-backed 5G expansion strategy. Without it, businesses are burdened by the trial-and-error losses that are all too common with 5G build-outs. Location precision's myriad benefits Improved location precision has many benefits for telcos looking to pinpoint where to build, market and provision 5G. Among them are: Better data: Broadening insights on commercial, residential and mixed-use locations through easy-to-consume, scalable datasets provide highly accurate in-depth analyses for marketing and meeting customer demand. Better serviceability insights: Complete and accurate location insights allow for a comprehensive view of serviceable addresses where products and services can be delivered to current and new customers causing ROI to improve and customers to be adequately served. Better subscriber returns: Companies that deploy fixed wireless services often experience plan cancellations due to inconsistencies of signal performance, which typically result from the misalignment of sites with network assets. Location-based data provides operators with the ability to adapt their networks for signal consistency and serviceability as sites and structures change. The 5G future The role of location intelligence in accelerating development of new broadband services and driving ROI in a 5G world cannot be overstated. It adds a critical element of data integrity that informs network optimization, customer targeting and service provisioning so telecom service providers can ensure their investments are not made with blind hope.

Read More
Hyper-Converged Infrastructure

As Edge Applications Multiply, OpenInfra Community Delivers StarlingX 5.0, Offering Cloud Infrastructure Stack for 5G, IoT

Article | October 10, 2023

StarlingX—the open source edge computing and IoT cloud platform optimized for low-latency and high-performance applications—is available in its 5.0 release today. StarlingX combines Ceph, OpenStack, Kubernetes and more to create a full-featured cloud software stack that provides everything carriers and enterprises need to deploy an edge cloud on a few servers or hundreds of them.

Read More
Application Infrastructure, Application Storage

How NSPs Prepare to Thrive in the 5G Era

Article | July 19, 2023

In my last blog in this series, we looked at the present state of 5G. Although it’s still early and it’s impossible to fully comprehend the potential impact of 5G use cases that haven’t been built yet, opportunities to monetize 5G with little additional investment are out there for network service providers (NSPs) who know where to look. Now, it’s time to look toward the future. Anyone who’s been paying attention knows that 5G technology will be revolutionary across many industry use cases, but I’m not sure everyone understands just how revolutionary, and how quickly it will go down. According to Gartner®, “While 10% of CSPs in 2020 provided commercializable 5G services, which could achieve multiregional availability, this number will increase to 60% by 2024”.[i] With so many recognizing the value of 5G and acting to capitalize on it, NSPs that fail to prepare for future 5G opportunities today are doing themselves and their enterprise customers a serious disservice. Preparing for a 5G future may seem daunting but working with a trusted interconnection partner like Equinix can help make it easier. 5G is so challenging for NSPs and their customers because it is so revolutionary. Mobile radio networks were built with consumer use cases in mind, which means the traffic from those networks is generally dumped straight to the internet. 5G is the first generation of wireless technology capable of supporting enterprise-class business applications, which means it’s also forcing many NSPs to consider alternatives to the public internet to support those applications. User plane function breakout helps put traffic near the app In my last article, I mentioned that one of the key steps mobile network operators (MNOs) could take to enable 5G monetization in the short term would be to bypass the public internet by enabling user traffic functions in the data center. This is certainly a step in the right direction, but to prepare themselves for future 5G and multicloud opportunities, they must go further by enabling user plane function (UPF) breakout. The 5G opportunities of tomorrow will rely on wireless traffic residing as close as possible to business applications, to reduce the distance data must travel and keep latency as low as possible. This is a similar challenge to the one NSPs faced in the past with their wireline networks. To address that challenge, they typically deployed virtual network functions (VNFs) on their own equipment. This helped them get the network capabilities they needed, when and where they needed them, but it also required them to buy colocation capacity and figure out how to interconnect their VNFs with the rest of their digital infrastructure. Instead, Equinix customers have the option to do UPF breakout with Equinix Metal®, our automated bare-metal-as-a-service offering, or Network Edge virtual network services on Platform Equinix®. Both options provide a simple, cost-effective way to get the edge infrastructure needed to support 5G business applications. Since both offerings are integrated with Equinix Fabric™, they allow NSPs to create secure software-defined interconnection with a rich ecosystem of partners. This streamlines the process of setting up hybrid deployments. Working with Equinix can help make UPF breakout less daunting. Instead of investing massive amounts of money to create 5G-ready infrastructure everywhere they need it, they can take advantage of more than 235 Equinix International Business Exchange™ (IBX®) data centers spread across 65 metros in 27 countries on five continents. This allows them to shift from a potentially debilitating up-front CAPEX investment to an OPEX investment spread over time, making the economics around 5G infrastructure much more manageable. Support MEC with a wide array of partners Multiaccess edge compute (MEC) will play a key role in enabling advanced 5G use cases, but first enterprises need a digital infrastructure capable of supporting it. This gets more complicated when they need to modernize their infrastructure while maintaining existing application-level partnerships. To put it simply, NSPs and their enterprise customers need an infrastructure provider that can not only partner with them, but also partner with their partners. With Equinix Metal, organizations can deploy the physical infrastructure they need to support MEC at software speed, while also supporting capabilities from a diverse array of partners. For instance, Equinix Metal provides support for Google Anthos, Amazon Elastic Container Service (ECS) Anywhere and Amazon Elastic Kubernetes Service (EKS) Anywhere. These are just a few examples of how Equinix interconnection offerings make it easier to collaborate with leading cloud providers to deploy MEC-driven applications. Provision reliable network slicing in a matter of minutes Network slicing is another important 5G capability that can help NSPs differentiate their offerings and unlock new business opportunities. On the surface, it sounds simple: slicing up network traffic into different classes of service, so that the most important traffic is optimized for factors such as high throughput, low latency and security. However, NSPs won’t always know exactly what slices their customers will want to send or where they’ll want to send them, making network slice mapping a serious challenge. Preparing for a 5G future may seem daunting but working with a trusted interconnection partner like Equinix can help make it easier.” Equinix Fabric offers a quicker, more cost-effective way to map network slices, with no need for cross connects to be set on the fly. With software-defined interconnection, the counterparty that receives the network slice essentially becomes an automated function that NSPs can easily control. This means NSPs can provision network slicing in a matter of minutes, not days, even when they don’t know who the counterparty is going to be. Service automation enabled by Equinix Fabric can be a critical element of an NSP’s multidomain orchestration architecture. 5G use case: Reimagining the live event experience As part of the MEF 3.0 Proof of Concept showcase, Equinix partnered with Spectrum Enterprise, Adva, and Juniper Networks to create a proof of concept (PoC) for a differentiated live event experience. The PoC showed how event promoters such as minor league sports teams could ingest multiple video feeds into an AI/ML-driven GPU farm that lives in an Equinix facility, and then process those feeds to present fans with custom content on demand. With the help of network slicing and high-performance MEC, fans can build their own unique experience of the event, looking at different camera angles or following a particular player throughout the game. Event promoters can offer this personalized experience even without access to the on-site data centers that are more common in major league sports venues. DISH taps Equinix for digital infrastructure services in support of 5G rollout As DISH looks to build out the first nationwide 5G network in the U.S., they will partner with Equinix to gain access to critical digital infrastructure services in our IBX data centers. This is a great example of how Equinix is equipped to help its NSP partners access the modern digital infrastructure needed to capitalize on 5G—today and into the future. DISH is taking the lead in delivering on the promise of 5G in the U.S., and our partnership with Equinix will enable us to secure critical interconnections for a nationwide 5G network. With proximity to large population centers, as well as network and cloud density, Equinix is the right partner to connect our cloud-native 5G network.” - Jeff McSchooler, DISH executive vice president of wireless network operations

Read More
Application Infrastructure

A Look at Trends in IT infrastructure and Operations for 2022

Article | May 9, 2022

We’re all hoping that 2022 will finally end the unprecedented challenges brought by the global pandemic and things will return to a new normalcy. For IT infrastructure and operations organizations, the rising trends that we are seeing today will likely continue, but there are still a few areas that will need special attention from IT leaders over the next 12 to 18 months. In no particular order, they include: The New Edge Edge computing is now at the forefront. Two primary factors that make it business-critical are the increased prevalence of remote and hybrid workplace models where employees will continue working remotely, either from home or a branch office, resulting in an increased adoption of cloud-based businesses and communications services. With the rising focus on remote and hybrid workplace cultures, Zoom, Microsoft Teams, and Google Meet have continued to expand their solutions and add new features. As people start moving back to office, they are likely to want the same experience they had from home. In a typical enterprise setup, branch office traffic is usually backhauled all the way to the data center. This architecture severely impacts the user experience, so enterprises will have to review their network architectures and come up with a roadmap to accommodate local egress between branch offices and headquarters. That’s where the edge can help, bringing it closer to the workforce. This also brings an opportunity to optimize costs by migrating from some of the expensive multi-protocol label switching (MPLS) or private circuits to relatively low-cost direct internet circuits, which is being addressed by the new secure access service edge (SASE) architecture that is being offered by many established vendors. I anticipate some components of SASE, specifically those related to software-defined wide area network (SD-WAN), local egress, and virtual private network (VPN), will drive a lot of conversation this year. Holistic Cloud Strategy Cloud adoption will continue to grow, and along with software as a service (SaaS), there will be renewed interest in infrastructure as a service (IaaS), albeit for specific workloads. For a medium-to-large-sized enterprise with a substantial development environment, it will still be cost-prohibitive to move everything to the cloud, so any cloud strategy would need to be holistic and forward-looking to maximize its business value. Another pandemic-induced shift is from using virtual machines (VMs) as a consumption unit of compute to containers as a consumption unit of software. For on-premises or private cloud deployment architectures that require sustainable management, organizations will have to orchestrate containers and deploy efficient container security and management tools. Automation Now that cloud adoption, migration, and edge computing architectures are becoming more prevalent, the legacy methods of infrastructure provisioning and management will not be scalable. By increasing infrastructure automation, enterprises can optimize costs and be more flexible and efficient—but only if they are successful at developing new skills. To achieve the goal of “infrastructure as a code” will require a shift in the perspective on infrastructure automation to one that focuses on developing and sustaining skills and roles that improve efficiency and agility across on-premises, cloud, and edge infrastructures. Defining the roles of designers and architects to support automation is essential to ensure that automation works as expected, avoids significant errors, and complements other technologies. AIOps (Artificial Intelligence for IT Operations) Alongside complementing automation trends, the implementation of AIOps to effectively automate IT operations processes such as event correlation, anomaly detection, and causality determination will also be important. AIOps will eliminate the data silos in IT by bringing all types of data under one roof so it can be used to execute machine learning (ML)-based methods to develop insights for responsive enhancements and corrections. AIOps can also help with probable cause analytics by focusing on the most likely source of a problem. The concept of site reliability engineering (SRE) is being increasingly adopted by SaaS providers and will gain importance in enterprise IT environments due to the trends listed above. AIOps is a key component that will enable site reliability engineers (SREs) to respond more quickly—and even proactively—by resolving issues without manual intervention. These focus areas are by no means an exhaustive list. There are a variety of trends that will be more prevalent in specific industry areas, but a common theme in the post-pandemic era is going to be superior delivery of IT services. That’s also at the heart of the Autonomous Digital Enterprise, a forward-focused business framework designed to help companies make technology investments for the future.

Read More

Spotlight

Clarke Telecom

Clarke Telecom carries out every aspect of wireless telecoms network infrastructure delivery. From acquisition, planning and design through to deployment and optimization, Clarke Telecom project manage network roll-out for the mobile phone companies in the UK. Clarke Telecom’s people are key to the success of the business; the company ensures that its employees possess the necessary knowledge and skills, and receive continuous training to offer the best expertise in the industry.

Related News

Events