
02

www.kaspersky.com

#truecybersecurity

Machine Learning
for Malware Detection

Kaspersky Enterprise Cybersecurity

03

Contents

Basic approaches to malware detection 1

Machine learning: concepts and definitions 2

Unsupervised learning 2

Supervised learning 2

Deep learning 3

Machine learning application specifics in cybersecurity 4

Large representative datasets are required 4

The trained model has to be interpretable 4

False positive rates must be extremely low 4

Algorithms must allow us to quickly adapt them to malware writers’
counteractions 5

Kaspersky Lab machine learning application 6

Detecting new malware in pre-execution with similarity hashing 6

Two-stage pre-execution detection on users’ computers with
similarity hash mapping combined with decision trees ensemble 8

Deep learning against rare attacks 10

Deep learning in post-execution behavior detection 10

Applications in the infrastructure 12

Clustering the incoming stream of objects 12

Distillation: packing the updates 13

What did we learn about machine learning after doing it for a decade? 14

1

Basic approaches
to malware detection

An efficient, robust and scalable malware recognition module is the key
component of every cybersecurity product. Malware recognition modules
decide if an object is a threat, based on the data they have collected on it. This
data may be collected at different phases:

– Pre-execution phase data is anything you can tell about a file without
executing it. This may include executable file format descriptions, code
descriptions, binary data statistics, text strings and information extracted via
code emulation and other similar data.

– Post-execution phase data conveys information about behavior or events
caused by process activity in a system.

In the early epochs of the cyber era, the number of malware threats was
relatively low, and simple handcrafted pre-execution rules were often enough to
detect threats. But a decade ago, the tremendous growth of the malware stream
did not allow anti-malware solutions to rely solely on the expensive manual
creation of detection rules.

It was natural for anti-malware companies to start augmenting their malware
detection and classification with machine learning, a computer science area
that has shown great success in image recognition, searching and decision-
making. Today, machine learning augments malware detection using various
kinds of data on host, network and cloud-based anti-malware components.

Machine Learning Methods
for Malware Detection

In this article, we summarize our decade’s worth of experience with implementing machine
learning into protecting our customers from cyberthreats.

2

Machine learning:
concepts and definitions

According to the classic definition given by AI pioneer Arthur Samuel, machine
learning is a set of methods that gives “computers the ability to learn without
being explicitly programmed.”

In other words, a machine learning algorithm discovers and formalizes the
principles that underlie the data it sees. With this knowledge, the algorithm can
reason the properties of previously unseen samples. In malware detection,
a previously unseen sample could be a new file. Its hidden property could be
malware or benign. A mathematically formalized set of principles underlying data
properties is called the model.

Machine learning has a broad variety of approaches that it takes to a solution
rather than a single method. These approaches have different capacities and
different tasks that they suit best.

Unsupervised learning

One machine learning approach is unsupervised learning. In this setting, we
are given only a data set without the right answers for the task. The goal is to
discover the structure of the data or the law of data generation.

One important example is clustering. Clustering is a task that includes splitting
a data set into groups of similar objects. Another task is representation learning –
this includes building an informative feature set for objects based on their low-
level description (for example, an autoencoder model).

Large unlabeled datasets are available to cybersecurity vendors and the cost
of their manual labeling by experts is high – this makes unsupervised learning
valuable for threat detection. Clustering can help with optimizing efforts for the
manual labeling of new samples. With informative embedding, we can decrease
the number of labeled objects needed for the usage of the next machine learning
approach in our pipeline: supervised learning.

Supervised learning

Supervised learning is a setting that is used when both the data and the right
answers for each object are available. The goal is to fit the model that will
produce the right answers for new objects.

Supervised learning consists of two stages:

• Training a model and fitting a model to available training data.

• Applying the trained model to new samples and obtaining predictions.

The task:

• we are given a set of objects
• each object is represented with feature set X
• each object is mapped to right answer or labeled as Y

This training information is utilized during the training phase, when we search
for the best model that will produce the correct label Y’ for previously unseen
objects given the feature set X’.

In the case of malware detection, X could be some features of file content or
behavior, for instance, file statistics and a list of used API functions. Labels Y
could be “malware” or “benign”, or even a more fine-grained classification, such
as a virus, Trojan-Downloader or adware.

3

In the “training” phase, we need to select some family of models, for example,
neural networks or decision trees. Usually each model in a family is determined
by its parameters. Training means that we search for the model from the selected
family with a particular set of parameters that gives the most accurate answers
for train objects according to some metric. In other words, we “learn” the optimal
parameters that define valid mapping from X to Y.

After we have trained a model and verified its quality, we are ready for the next
phase – applying the model to new objects. In this phase, the type of the model
and its parameters do not change. The model only produces predictions.

In the case of malware detection, this is the protection phase. Vendors often
deliver a trained model to users where the product makes decisions based on
model predictions autonomously. Mistakes can cause devastating consequences
for a user – for example, removing an OS driver. It is crucial for the vendor to select
a model family properly. The vendor must use an efficient training procedure to
find the model with a high detection rate and a low false positive rate.

Deep learning

Deep learning is a special machine learning approach that facilitates the
extraction of features of a high level of abstraction from low-level data. Deep
learning has proven successful in computer vision, speech recognition,
natural language processing and other tasks. It works best when you want the
machine to infer high-level meaning from low-level data. For image recognition
challenges, like ImageNet, deep learning based approaches already surpass
humans.

It is natural that cybersecurity vendors tried to apply deep learning for
recognizing malware from low-level data. A deep learning model can learn
complex feature hierarchies and incorporate diverse steps of malware detection
pipeline into one solid model that can be trained end-to-end, so that all of the
components of the model are learned simultaneously.

Training phase

Processing
by a predictive model

Model decision

Unknown
executable

Protection phase

Malicious / Benign

Benign
executables

Training Predictive model
Malicious
executables

Machine Learning: detection algorithm lifecycle

4

Machine learning application specifics
in cybersecurity

User products that implement machine learning make decisions autonomously.
The quality of the machine learning model impacts the user system performance
and its state. Because of this, machine learning-based malware detection has
specifics.

Large representative datasets are required

It is important to emphasize the data-driven nature of this approach. A created
model depends heavily on the data it has seen during the training phase to
determine which features are statistically relevant for predicting the correct label.
We will explain why making a representative data set is so important. Imagine we
collect a training set, and we overlook the fact that occasionally all files larger
than 10 MB are all malware and not benign, which is certainly not true for real
world files. While training, the model will exploit this property of the dataset, and
will learn that any files larger than 10 MB are malware. It will use this property for
detection. When this model is applied to real world data, it will produce many
false positives. To prevent this outcome, we needed to add benign files with
larger sizes to the training set. Then, the model would not rely on an erroneous
data set property.

Generalizing this, we must train our models on a data set that correctly
represents the conditions where the model will be working in the real world.
This makes the task of collecting a representative dataset crucial for machine
learning to be successful.

The trained model has to be interpretable

Most of the model families used nowadays, like deep neural networks, are called
black box models. Black box models are given the input X, and they will produce
Y through a complex sequence of operations that can hardly be interpreted by
a human. This could pose a problem in real-life applications. For example, when
a false alarm occurs, and we would like to understand why it happened we ask:
was it some problem with a training set or the model itself? The interpretability
of a model determines how easy it will be for us to manage it, assess its quality
and correct its operation.

False positive rates must be extremely low

False positives happen when an algorithm mistakes a malicious label for a benign
file. Our aim is to make the false positive rate as low as possible, or “zero.” This
is untypical for machine learning application. It is important, because even one
false positive in a million benign files can create serious consequences for users.
This is complicated by the fact that there are lots of clean files in the world, and
they keep appearing.

To address this problem, it is important to impose high requirements for both
machine learning models and metrics that will be optimized during training, with
the clear focus on low false positive rate (FPR) models.

This is still not enough, because new benign files that go unseen earlier may
occasionally be falsely-detected. We take this into account and implement a
flexible design of a model that allows us to fix false-positives on the fly, without
completely retraining the model. Examples of this are implemented in our pre-
and post-execution models, which are described in following sections.

5

Algorithms must allow us to quickly adapt them
to malware writers’ counteractions

Outside the malware detection domain, machine learning algorithms regularly
work under the assumption of fixed data distribution, which means that it
doesn’t change with time. When we have a training set that is large enough, we
can train the model so that it will effectively reason any new sample in a test set.
As time goes on, the model will continue working as expected.

After applying machine learning to malware detection, we have to face the fact
that our data distribution isn’t fixed:

• Active adversaries (malware writers) constantly work on avoiding detections
and releasing new versions of malware files that differ significantly from those
that have been seen during the training phase.

• Thousands of software companies produce new types of benign executables
that are significantly different from previously known types. The data on these
types was lacking in the training set, but the model, nevertheless, needs to
recognize them as benign.

This causes serious changes in data distribution and raises the problem of
detection rate degradation over time in any machine learning implementation.
Cybersecurity vendors that implement machine learning in their antimalware
solutions face this problem and need to overcome it. The architecture needs
to be flexible and has to allow model updates “on the fly” between retrainings.
Vendors must also have effective processes for collecting and labeling new
samples, enriching training datasets and regularly retraining models.

95%

100%

90%

85%

80%

75%

70%

65%

60%

55%

50%
0 1 2

How long ago the model has been trained (months)

3 4 5 6 7 8 9 10 11

D
e

te
ct

io
n

 r
at

e
 (%

 o
f

m
al

w
ar

e
 d

e
te

ct
e

d
)

FPR=10
-4

FPR=10

Degradation of a simple test model

-5

Machine Learning: test model detection rate degradation over time

6

Kaspersky Lab machine learning
application

The aforementioned properties of real world malware detection make
straightforward application of machine learning techniques a challenging task.
Kaspersky Lab has almost a decade’s worth of experience when it comes to
utilizing machine learning methods in information security applications.

Detecting new malware in pre-execution
with similarity hashing

At the dawn of the antivirus industry, malware detection on computers was based
on heuristic features that identified particular malware files by:

• code fragments
• hashes of code fragments or the whole file
• file properties
• and combinations of those features.

The main goal was to create a reliable fingerprint—a combination of features –
of a malicious file that could be checked quickly. Earlier, this workflow
required the manual creation of detection rules, via the careful selection of
a representative sequence of bytes or other features signaling a malware. During
the detection, an antiviral engine in a product checked the presence of the
malware fingerprint in a file against known malware fingerprints stored in the
antivirus database.

However, malware writers invented techniques like server-side polymorphism.
This resulted in the flow of hundreds of thousands malicious samples discovered
on a daily basis. At the same time, the fingerprints used were sensitive to small
changes in files. Minor changes in existing malware took it off the radar. The
previous approach quickly became ineffective because:

• Creating detection rules manually didn’t keep up with the emerging flow of
malware.

• Checking each file’s fingerprint against a library of known malware meant that
you couldn’t detect new malware until analysts manually create a detection rule.

We were interested in features that were robust against small changes in a file.
These features would detect new modifications of malware, but would not
require more resources for calculation. Performance and scalability are the key
priorities of the first stages of anti-malware engine processing.

To address this, we focused on extracting features that could be:

• calculated quickly, like statistics derived from file byte content or code
disassembly,

• directly retrieved from the structure of the executable, like a file format
description.

Using this data, we calculated a specific type of hash functions called locality-
sensitive hashes (LSH).

Regular cryptographic hashes of two almost identical files differ as much as
hashes of two very different files. There is no connection between the similarity
of files and their hashes. However, LSHs of almost identical files map to the same
binary bucket – their LSHs are very similar – with high probability. LSHs of two
different files differ substantially.

7

Very similar files Similar files Non-similar files

Cryptographic hash
(hash values)

Locality sensitive hash
(hash values)

But we went further. The LSH calculation was unsupervised. It didn’t take into
account our additional knowledge of each sample being malware or benign.

Having a dataset of similar and non-similar objects, we enhanced this approach
by introducing a training phase. We implemented a similarity hashing approach.
It’s similar to LSH, but it is supervised and capable of utilizing information about
pairs of similar and non-similar objects. In this case:

• Our training data X would be pairs of file feature representations [X1, X2]
• Y would be the label that would tell us whether the objects were actually

semantically similar or not.
• During training, the algorithm fits parameters of hash mapping h(X) to

maximize the number of pairs from the training set, for which h(X1) and h(X2)
are identical for similar objects and different otherwise.

This algorithm that is being applied to executable file features provides specific
similarity hash mapping with useful detection capabilities. In fact, we train several
versions of this mapping that differ in their sensitivity to local perturbations of
different sets of features. For example, one version of similarity hash mapping
could be more focused on capturing the executable file structure, while paying
less attention to the actual content. The other one could be more focused on
capturing the ASCII-strings of the file.

This captures the idea that different subsets of features could be more or less
discriminative to different kinds of malware files. For one of them, file content
statistics could reveal the presence of an unknown malicious packer. For the
others, the most important piece of information regarding potential behavior is
concentrated in strings representing used OS API, created file names, accessed
URLs or other feature subsets.

For more precise detection in products, the results of a similarity hashing
algorithm are combined with other machine learning-based detection methods.

Machine Learning: locality sensitive hashing

8

Feature X

Fe
at

u
re

 Y

Hard region:
decision trees
ensemble

Simple region:
similarity hash

K

L–1 L+1L

Two-stage pre-execution detection on users’
computers with similarity hash mapping
combined with decision trees ensemble

To analyze files during the pre-execution stage, our products combine
a similarity hashing approach with other trained algorithms in a two-stage
scheme. To train this model, we use a large collection of files that we know
to be malware and benign.

The two-stage analysis design addresses the problem of reducing computational
load on a user system and preventing false positives.

Some file features important for detection require larger computational
resources for their calculation. Those features are called “heavy”. To avoid their
calculation for all scanned files, we introduced a preliminary stage called a pre-
detect. A pre-detect occurs when a file is analyzed with “lightweight” features
and is extracted without substantial load on the system. In many cases, a pre-
detect provides us with enough information to know if a file is benign and ends
the file scan. Sometimes it even detects a file as malware. If the first stage was not
sufficient, the file goes to the second stage of analysis, when “heavy” features are
extracted for precise detection.

In our products, the two-stage analysis works in the following way. In the pre-
detect stage, learned similarity hash mapping is calculated for the lightweight
features of the scanned file. Then, it’s checked to see if there are any other files
with the same hash mapping, and whether they are malware or benign. A group of
files with a similar hash mapping value is called a hash bucket. Depending on the
hash bucket that the scanned file falls into, the following outcomes may happen:

• In a simple region case, the file falls into a bucket that contains only one kind
of object: malware or benign. If a file falls into a “pure malware bucket” we
detect it as malware. If it falls to a “pure benign bucket” we don’t scan it any
deeper. In both cases, we do not extract any new “heavy” features.

Schematic representation of segmentation of the object-space created with similarity hash mapping. For simplicity, the
illustration has only two dimensions. An index of each cell corresponds to the particular similarity hash mapping value. Each
cell of the grid illustrates a region of objects with the same value of similarity hash mapping, also known as a hash bucket. Dot
colors: malicious (red) and benign (blue). Two options are available: add the hash of a region to the malware database (simple
regions) or use it as the first part of the two-stage detector combined with a region-specific classifier (hard regions).

Machine Learning: segmentation of object space

9

• In a hard region, the hash bucket contains both malware and benign files. It is
the only case when the system may extract “heavy” features from the scanned
file for precise detection. For each hard region, there is a separate region
specific classifier trained. Currently we use a modification of decision trees
ensemble or a “heavy” feature-based similarity hashing, depending on what is
more effective in each hard region.

In reality, there are some hard regions that are not suitable for further analysis
by this two-stage technology, because they contain too many popular benign
files. Processing them with this method yields a high risk of false positives and
performance degradation. For such cases, we do not train a region specific
classifier and do not scan files in this region through this model. For correct
analysis in a region like this we use other detection technologies.

Implementation of a pre-detect stage drastically reduces the amount of files
that are heavily-scanned during the second step. This process improves the
performance because the lookup by similarity hash mapping in the pre-detect
phase is completed quickly.

Our two-stage design also reduces the risk of false positives:

• In the first (pre-detect) stage, we do not enable detection with region specific
classifiers in regions with a high risk of false positives. Because of this, the
distribution of objects passed to the second stage is biased towards the
“malware” class. This reduces the false positive rate, too.

• In the second stage, classifiers in each hard region are trained on malware
from only one bucket—but on all clean objects available in all the buckets
of the training set. This makes a regional classifier detect the malware of a
particular hard region bucket more precisely. It also prevents any unexpected
false positives, when the model works in products with real-world data.

Interpretability of the two-stage model comes from the fact that each hash
in a database is associated with some subset of malware samples in training.
The whole model could be adapted to a new daily malware stream via adding
detections, including hash mappings and tree ensemble models for a previously
unobserved region. This lets us revoke and retrain region specific classifiers
without significantly degrading the detection rate of the whole product. Without
this, we would need to retrain the whole model on all of the malware that we
know with every change we would want to make.

That being said, the two-stage malware detection is suitable for the specifics of
machine learning that were discussed in the introduction.

Class labels:
malware
or benign

I. Pre-detect Stage

Malware.exe Lightweigh
Features

Get lightweight
features

Pre-detect
region

Fast model
lookup

Full feature
vector

Map to pre-detect
region

Search Region
Model

II. Detect Stage

Model 1

...

...

Model L

Malware.exe

PE
File

f₁ 5

7

2

f₂

f₁

f₂

f

...

...

k

2

5

7

...

...

...

fk

12fn

Get heavy
features

Apply region-specific
classifier

L

Machine Learning: two-stage classifier

10

Deep learning against rare attacks

Typically, machine learning faces tasks when malicious and benign samples are
numerously represented in the training set. But some attacks are so rare that we
have only one example of malware for training. This is typical for high-profile
targeted attacks. In this case, we use a very specific deep learning-based model
architecture. We call this approach exemplar network (ExNet).

The idea here is that we train the model to build compact representations
of input features. We then use them for the to simultaneously train multiple
per-exemplar classifiers – these are algorithms that detect particular types of
malware. Deep learning allows us to combine these multiple steps (object feature
extraction, compact feature representation and local, or per-exemplar, model
creation) into one neural network pipeline that distills the discriminative features
for various types of malware.

This model can efficiently generalize knowledge about single malware samples
and a large collection of clean samples. Then, it can detect new modifications of
corresponding malware.

Deep learning in post-execution
behavior detection

The approaches described earlier were considered in the framework of static
analysis, when an object description is extracted and analyzed before the object’s
execution in the real user environment.

Static analysis at the pre-execution stage has a number of significant advantages.
The main advantage is that it is safe for the user. An object can be detected
before it starts to act on a real user’s machine. But it faces issues with advanced
encryption, obfuscation techniques and the use of a wide variety of high-level
script languages, containers, and fileless attack scenarios. These are situations
when post-execution behavior detection comes into play.

We also use deep learning methods to address the task of behavior detection.
In the post-execution stage, we are working with behavior logs provided by
the threat behavior engine. The behavior log is the sequence of system events
occurring during the process execution, together with corresponding arguments.
In order to detect malicious activity in observed log data, our model compresses
the obtained sequence of events to a set of binary vectors. It then trains a deep
neural network to distinguish clean and malicious logs.

Object
Low-level

object
features

Multi-layered
neural network

Compact object
representation

Per-exemplar
classifiers

Malware Z

Malware Y

Malware X

Machine Learning: exemplar network

11

A log’s compressing stage includes several steps:

1. The log is transformed into a bipartite behavior graph. This graph contains two
types of vertices: events and arguments. Edges are drawn between each event
and argument, which occur together in the same line in the log. Such a graph
representation is much more compact than the initial raw data. It stays robust
against any permutations of lines caused by tracing different runs of the same
multiprocessing program, or behavior obfuscation by the analyzed process.

2. After that, we automatically extract specific subgraphs, or behavior patterns,
from this graph. Each pattern contains a subset of events and adjacent arguments
related to a specific activity of the process, such as network communications, file
system exploration, modification of the system register, etc.

3. We compress each “behavior pattern” to a sparse binary vector. Each component
of this vector is responsible for the inclusion of a specific event or argument’s
token (related to web-, file- and other types of activity) in the template.

4. The trained deep neural network transforms sparse binary vectors of behavior
patterns into compact representations called pattern embeddings. Then they
are combined into a single vector, or log embedding, by taking the element-
wise maximum.

5. Finally, based on the log embedding, the network predicts the log’s
suspiciousness.

The main feature of the used neural network is the positiveness of all the weights
and the monotony property of all the activation functions. These properties
provide us with many important advantages:

• Our model’s suspicion score output only grows with time while processing new
lines from the log. As a result, malware cannot evade detection by performing
additional noise or a “clean” activity in parallel with its main payload.

• Since the model’s output is stable in time, we are probably protected from
eventual false alarms caused by the prediction’s fluctuation in the middle of
scanning of a clean log.

• Working with log samples in a monotonic space allows us to automatically select
events that cause the detection and manage false alarms more conveniently.

An approach like this enables us to train a deep learning model capable of
operating with high-level interpretable behavior concepts. This approach is safe
being applied to the whole diversity of user environments and incorporates false
alarm fixing capabilities in its architecture. Together, all of that gives us a powerful
mean for the behavioral detection of the most complicated modern threats.

...

ModifyFile(”notepad.exe”)

CreateFile(”config.xml”, 0644)

CreateFile(”doc1.rtf”, 0755)

ModifyFile(”doc1.rtf”)

ModifyFile(”doc1.rtf”)

CreateFile(”list.rtf”, 0755)

ModifyFile(”list.rtf”)

ModifyFile(”config.xml”)

ModifyFile(”doc1.rtf”)

DeleteFile(”doc1.rtf”)

DeleteFile(”list.rtf”)

...

Final class
label

Log

Log classification Log embedding

P
o

p
u

la
r

to
ke

n
s

Ev
e

n
ts

v(x)

h(x)

False alarm
minimization

with correction
of decision border

list.rtf doc1.rtf

CreateFile

...
CreateFile
DeleteFile
ModifyFile

RenameFile
...

.
1
1
1
0
.

...
false
files

fopen
...

list
...

40
41
42
...

.
0
0
0
.
1
.
0
0
0
.

CreateFile
ModifyFile
DeleteFile

CreateFile
ModifyFile

ModifyFile

CreateFile

“list.rtf”
“doc1.rtf”

“config.xml”
“list.rtf”
“doc1.rtf”

0644

0644
0755
“config.xml”
“doc1.rtf”
“list.rtf”

0755

config.xmlnotepad.exe

Classifier

(x₁₁x₁₂...x₁D)
(x₂₁x₂₂...x₂D)
(x₃₁x₃₂...x₃D)
(x₄₁x₄₂...x₄D)max-pooling()

Bipartite graph Behavior patterns

f₁ ... f D

0.3
4.5
2.7

...
0.02

7.1
3.8

“notepad.exe”
“config.xml”
“list.rtf”
“doc1.rtf”

DeleteFile

ModifyFile

Pattern embeddings

Log compression

Machine Learning: behavior model pipeline

12

Applications in the infrastructure
From efficiently processing incoming streams of malware in Kaspersky Lab to
maintaining large-scale detection algorithms, machine learning plays an equally
important role when it comes to building a proper in-lab infrastructure.

Clustering the incoming stream of objects

With hundreds of thousands samples coming in to Kaspersky Lab every day along
with the high cost of manual annotation of new types of samples, reducing the
amount of data that analysts would need to look at becomes a crucial task.
With efficient clustering algorithms, we can go from an unbearable number of
separate unknown files to a reasonable number of object groups. Parts of these
object groups would be automatically processed based on the presence of an
already annotated object inside it.

All recently received incoming files are analyzed by our in-lab malware detection
techniques including pre- and post-execution. We aim to label as many objects as
possible, but some objects are still unclassified. We want to label them. For this, all
objects, including the labeled ones, are processed by multiple feature extractors.
Then, they are passed together through several clustering algorithms (e.g. K-means
and dbscan) depending on the file type. This produces groups of similar objects.

At this point, we face four different types of resulting clusters with unknown files:

1) clusters that contain malware and unknown files;
2) clusters that contain clean and unknown files;
3) clusters that contain malware, clean and unknown files;
4) cluster that only contain unknown files.

For objects in the clusters of types 1-3, we use additional machine learning
algorithms like belief propagation to verify the similarity of unknown samples to
classified ones. In some cases this is effective even in the clusters of type 3. This
allows us to automatically label unknown files, leaving only the clusters of type 4,
and partially of type 3, for humans. This results in the drastic reduction of human
annotations needed on a daily basis.

Incoming stream
of unknown and already

classified objects

Clustering

Cluster 1

Cluster 2

Cluster 3
Human

annotation

Cluster 4
Human

annotation

Machine learning: clustering the incoming stream of objects

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/Belief_propagation

13

Distillation: packing the updates

The way we detect malware in-lab is different from algorithms optimal for user
products. Some of the most powerful classification models require a large
amount of resources like CPU/GPU time and memory, along with expensive
feature extractors.

For example, since most of the modern malware writers use advanced packers
and obfuscators to hide payload functionality, machine learning models will
highly benefit from using execution logs from an in-lab sandbox with advanced
behavior logging. At the same time, gathering these kinds of logs in a pre-
execution phase on a user’s machine could be computationally intense. It could
result in notable user system performance degradation.

It is more effective to keep and run those “heavy” models in-lab. Once we know
that a particular file is malware, we use the knowledge we have gained from the
models to train some lightweight classifier that is going to work in our products.

In machine learning, this process is called distillation. We use it to teach our
products to detect new kinds of malware:

1. In our lab, we first extract some time-consuming features from labeled files
and train a “heavy” in-lab model on them.

2. We take a pool of unknown files and use our “heavy” in-lab model to label them.
3. Then, we use the newly labeled files to augment the training set for the

lightweight classification model.
4. We deliver the lightweight model to user products.

Distillation allows us to effectively export our knowledge on new and unknown
threats to our users.

Benign
executables

Malicious
executables

Unknown
executables

Time-consuming
raw data extraction

(sandbox logs,
disassembler log, etc.)

Training

Large-scale
predictive

model

Compact predictive
model operating
on lightweight

features

Delivery
of a compact

model to users

Processing
by a large-scale

predictive model

Unknown
executables

are labeled by
in lab model

Lightweight feature
extraction (file

structure, content
statistics, API, etc.)

Training

Knowledge distillation phase

Large scale-model training phase

01 1010

Machine Learning: large scale model distillation

14

What did we learn about machine learning
after doing it for a decade?

We learned that passing the routine to an algorithm leaves more space for us to
research and create. This allows us to deliver better protection to our customers.
Through our attempts, failures and wins, we eventually learned what is important
when it comes to letting machine learning make its superior impact into malware
detection.

Here is the boilerplate:

• Have the right data. This is the fuel of machine learning. The data must be
representative, relevant to current malware landscape and correctly labeled
when needed. We became experts in extracting and preparing data and
training our algorithms. We made a sufficient collection with some billions of
file samples to empower machine learning.

• Know theoretical machine learning and how to apply it to cybersecurity.
We understand how machine learning works in general and keep track of
state-of-the-art approaches emerging in the field. On the other hand, we
are also experts in cybersecurity and we foresee the value each innovative
theoretical approach brings to cybersecurity practices.

• Know user practical needs and be an expert at implementing machine
learning into products that help users with their needs. We make machine
learning work effectively and safely. We build innovative solutions that are
largely required by the cybersecurity market.

• Earn a sufficient user base. This introduces the power of “crowdsourcing” to
detection quality and gives us the feedback we need to let us know if we are
right or wrong.

• Keep detection methods in multi-layered synergy. As long as today’s
advanced threat attack vectors are very diverse, cybersecurity solutions should
deliver protection at multiple layers. In our products, machine learning-based
detection works synergistically with other kinds of detection in a multi-layered
arsenal of modern cybersecurity protection.

Expert
analysis

HuMachine™

Big Data /
Threat Intelligence

Machine
Learning

Kaspersky Lab
Enterprise Cybersecurity: www.kaspersky.com/enterprise
Cyber Threats News: www.securelist.com
IT Security News: business.kaspersky.com/

#truecybersecurity
#HuMachine

www.kaspersky.com

© 2017 AO Kaspersky Lab. All rights reserved. Registered trademarks and service marks are the property of
their respective owners.

Expert
analysis

HuMachine™

Big Data /
Threat Intelligence

Machine
Learning

www.kaspersky.com

© 2017 AO Kaspersky Lab. All rights reserved. Registered trademarks and service
marks are the property of their respective owners.

Kaspersky Lab
Enterprise Cybersecurity: www.kaspersky.com/enterprise
Cyber Threats News: www.securelist.com
IT Security News: business.kaspersky.com/

#truecybersecurity
#HuMachine

www.kaspersky.com
www.kaspersky.com
http://www.kaspersky.com/enterprise
http://www.securelist.com
http://business.kaspersky.com/

	Basic approaches
to malware detection
	Machine learning:
concepts and definitions
	Unsupervised learning
	Supervised learning
	Deep learning

	Machine learning application specifics in cybersecurity
	Large representative datasets are required
	The trained model has to be interpretable
	False positive rates must be extremely low
	Algorithms must allow us to quickly adapt them to malware writers’ counteractions

	Kaspersky Lab machine learning application
	Detecting new malware in pre-execution
with similarity hashing
	Two-stage pre-execution detection on users’ computers with similarity hash mapping combined with decision trees ensemble
	Deep learning against rare attacks
	Deep learning in post-execution
behavior detection

	Applications in the infrastructure
	Clustering the incoming stream of objects
	Distillation: packing the updates
	What did we learn about machine learning
after doing it for a decade?

