BUILDING MORE PRODUCTIVITY INTO OUR HEADSETS WITH AMAZON ALEXA AND TILE

If you’re like me, one of the first things you do when you leave the house in the morning is put on your headset. I may be joining a meeting, calling a friend, getting coffee – sometimes all three – before I even set foot in the office. When I get to work, I’m collaborating with teammates who are in home and Poly offices throughout the country and world. Here at Poly, we understand that every minute counts and that a good headset is a true partner in productivity. I’m pleased to announce two new outstanding features to our Voyager headsets that are going to help you get more out of your devices. First, we have integrated Amazon Alexa into Voyager 5200 and Voyager 4200 UC Series. Just tap-and-ask, and Alexa will respond so you can focus on your tasks at hand. With Alexa built-in you can check your schedule, your to-do list or catch up on the latest news.

Spotlight

CHAMS PLC

Chams PLC is Nigeria's leading identity management and transaction payments systems solution provider. Starting off as a privately owned business in 1985, we have evolved from computer and hardware maintenance to providing enterprise technology solutions in the identity management and transaction payments space to public and private sector institutions.

OTHER ARTICLES
Hyper-Converged Infrastructure

How to Rapidly Scale IT Infrastructure For Remote Workers

Article | October 3, 2023

Rapid IT infrastructure scaling is always challenging. In March 2020, the coronavirus caused a surge in remote workers as organizations switched overwhelmingly to work-from-home policies. Scaling IT infrastructure to support this sudden shift proved to be a struggle for IT teams, resulting in a migration to cloud-based applications and solutions, a rush on hardware that can support a remote environment, and challenges scaling VPNs to support remote worker security. Here are some of the insights and lessons learned from IT professionals.

Read More
Hyper-Converged Infrastructure

Accelerating DevOps and Continuous Delivery with IaaS Virtualization

Article | September 14, 2023

Adopting DevOps and CD in IaaS environments is a strategic imperative for organizations seeking to achieve agility, competitiveness, and customer satisfaction in their software delivery processes. Contents 1. Introduction 2. What is IaaS Virtualization? 3. Virtualization Techniques for DevOps and Continuous Delivery 4. Integration of IaaS with CI/CD Pipelines 5. Considerations in IaaS Virtualized Environments 5.1. CPU Swap Wait 5.2. CPU System/Wait Time for VKernel: 5.3. Memory Balloon 5.4.Memory Swap Rate: 5.5. Memory Usage: 5.6. Disk/Network Latency: 6. Industry tips for IaaS Virtualization Implementation 6.1. Infrastructure Testing 6.2. ApplicationTesting 6.3. Security Monitoring 6.4. Performance Monitoring 6.5. Cost Optimization 7. Conclusion 1. Introduction Infrastructure as a Service (IaaS) virtualization presents significant advantages for organizations seeking to enhance their agility, flexibility, and speed to market within the DevOps and continuous delivery frameworks. Addressing the associated risks and challenges is crucial and can be achieved by employing the appropriate monitoring and testing techniques, enlisted further, in this blog. IaaS virtualization allows organizations to provision and de-provision resources as needed, eliminating the need for long-term investments in hardware and data centers. Furthermore, IaaS virtualization offers the ability to operate with multiple operating systems, databases, and programming languages, empowering teams to select the tools and technologies that best suit their requirements. However, organizations must implement comprehensive testing and monitoring strategies, ensure proper security and compliance controls, and adopt the best resource optimization and management practices to leverage the full potential of virtualized IaaS. To achieve high availability and fault tolerance along with advanced networking, enabling complex application architectures in IaaS virtualization, the blog mentions five industry tips. 2. What is IaaS Virtualization? IaaS virtualization involves simultaneously running multiple operating systems with different configurations. To run virtual machines on a system, a software layer known as the virtual machine monitor (VMM) or hypervisor is required. Virtualization in IaaS handles website hosting, application development and testing, disaster recovery, and data storage and backup. Startups and small businesses with limited IT resources and budgets can benefit greatly from virtualized IaaS, enabling them to provide the necessary infrastructure resources quickly and without significant capital expenditures. Virtualized IaaS is a potent tool for businesses and organizations of all sizes, enabling greater infrastructure resource flexibility, scalability, and efficiency. 3. Virtualization Techniques for DevOps and Continuous Delivery Virtualization is a vital part of the DevOps software stack. Virtualization in DevOps process allows teams to create, test, and implement code in simulated environments without wasting valuable computing resources. DevOps teams can use the virtual services for thorough testing, preventing bottlenecks that could slow down release time. It heavily relies on virtualization for building intricate cloud, API, and SOA systems. In addition, virtual machines benefit test-driven development (TDD) teams that prefer to begin their troubleshooting at the API level. 4. Integration of IaaS with CI/CD Pipelines Continuous integration is a coding practice that frequently implements small code changes and checks them into a version control repository. This process not only packages software and database components but also automatically executes unit tests and other tests to provide developers with vital feedback on any potential breakages caused by code changes. Continuous testing integrates automated tests into the CI/CD pipeline. For example, unit and functionality tests identify issues during continuous integration, while performance and security tests are executed after a build is delivered in continuous delivery. Continuous delivery is the process of automating the deployment of applications to one or more delivery environments. IaaS provides access to computing resources through a virtual server instance, which replicates the capabilities of an on-premise data center. It also offers various services, including server space, security, load balancing, and additional bandwidth. In modern software development and deployment, it's common to integrate IaaS with CI/CD pipelines. This helps automate the creation and management of infrastructure using infrastructure-as-code (IAC) tools. Templates can be created to provision resources on the IaaS platform, ensuring consistency and meeting software requirements. Additionally, containerization technologies like Docker and Kubernetes can deploy applications on IaaS platforms. 5. Considerations in IaaS Virtualized Environments 5.1. CPU Swap Wait The CPU swap wait is when the virtual system waits while the hypervisor swaps parts of the VM memory back in from the disk. This happens when the hypervisor needs to swap, which can be due to a lack of balloon drivers or a memory shortage. This can affect the application's response time. One can install the balloon driver and/or reduce the number of VMs on the physical machine to resolve this issue. 5.2. CPU System/Wait Time for VKernel Virtualization systems often report CPU or wait time for the virtualization kernel used by each virtual machine to measure CPU resource overhead. While this metric can't be directly linked to response time, it can impact both ready and swap times if it increases significantly. If this occurs, it could indicate that the system is either misconfigured or overloaded, and reducing the number of VMs on the machine may be necessary. 5.3. Memory Balloon Memory ballooning is a memory management technique used in virtualized IaaS environments. It works by injecting a software balloon into the VM's memory space. The balloon is designed to consume memory within the VM, causing it to request more memory from the hypervisor. As a result, if the host system is experiencing low memory, it will take memory from its virtual infrastructures, thus negatively affecting the guest's performance, causing swapping, reduced file-system buffers, and smaller system caches. 5.4. Memory Swap Rate Memory swap rate is a performance metric used in virtualized IaaS environments to measure the amount of memory being swapped to disk. When the swap rate is high, it leads to longer CPU swap times and negatively affects application performance. In addition, when a VM is running, it may require more memory than is physically available on the server. In such cases, the hypervisor may use disk space as a temporary storage area for excess memory. Therefore, to optimize, it is important to ensure that VMs have sufficient memory resources allocated. 5.5. Memory Usage Memory usage refers to the amount of memory being used by a VM at any given time. Memory usage is assessed by analyzing the host level, VM level, and granted memory. When memory usage exceeds the available physical memory on the server, the hypervisor may use disk space as a temporary storage area for excess memory, leading to performance issues. The disparity between used and granted memory indicates the overcommitment rate, which can be adjusted through ballooning. 5.6. Disk/Network Latency Some virtualization providers provide integrated utilities for assessing the latency of disks and network interfaces utilized by a virtual machine. Since latency directly affects response time, increased latency at the hypervisor level will also impact the application. An excessive amount of latency indicates the system is overloaded and requires reconfiguration. These metrics enable us to monitor and detect any negative impact a virtualized system might have on our application. 6. Industry tips for IaaS Virtualization Implementation Testing, compliance management and security arecritical aspects of managing virtualized IaaS environments . By implementing a comprehensive strategy, organizations ensure their infrastructure and applications' reliability, security, and performance. 6.1. Infrastructure Testing This involves testing the infrastructure components of the IaaS environment, such as the virtual machines, networks, and storage, aiming to ensure the infrastructure is functioning correctly and that there are no performance bottlenecks, security vulnerabilities, or configuration issues. Testing the virtualized environment, storage testing (testing data replication and backup and recovery processes), and network testing are some of the techniques to be performed. 6.2. Application Testing Applications running on the IaaS virtual environment should be thoroughly tested to ensure they perform as expected. This includes functional testing to ensure that the application meets its requirements and performance testing to ensure that the application can handle anticipated user loads. 6.3. Security Monitoring Security monitoring is critical in IaaS environments, owing to the increased risks and threats. This involves monitoring the infrastructure and applications for potential security threats, vulnerabilities, or breaches. In addition, regular vulnerability assessments and penetration testing help identify and address potential security issues before they become significant problems. 6.4. Performance Monitoring Performance monitoring is essential to ensuring that the underlying infrastructure meets performance expectations and has no performance bottlenecks. This comprises monitoring metrics such as CPU usage, memory usage, network traffic, and disk utilization. This information is used to identify performance issues and optimize resource usage. 6.5. Cost Optimization Cost optimization is a critical aspect of a virtualized IaaS environment with optimized efficiency and resource allocation. Organizations reduce costs and optimize resource usage by identifying and monitoring usage patterns and optimizing elastic and scalable resources. It involves right-sizing resources, utilizing infrastructure automation, reserved instances, spot instances (unused compute capacity purchased at a discount), and optimizing storage usage. 7. Conclusion IaaS virtualization has become a critical component of DevOps and continuous delivery practices. To rapidly develop, test, and deploy applications with greater agility and efficiency by providing on-demand access to scalable infrastructure resources to Devops teams, IaaS virtualization comes into picture. As DevOps teams continue to seek ways to streamline processes and improve efficiency, automation will play an increasingly important role. Automated deployment, testing, and monitoring processes will help reduce manual intervention and increase the speed and accuracy of development cycles. In addition, containers will offer a lightweight and flexible alternative to traditional virtualization, allowing DevOps teams to package applications and their dependencies into portable, self-contained units that can be easily moved between different environments. This can reduce the complexity of managing virtualized infrastructure environments and enable greater flexibility and scalability. By embracing these technologies and integrating them into their workflows, DevOps teams can achieve greater efficiency and accelerate their delivery of high-quality software products.

Read More
Hyper-Converged Infrastructure

How Managed Service Providers Drive Management in HCI

Article | October 3, 2023

Driving excellence in HCI: Unveil the crucial role of managed service providers in deploying and managing Hyper-Converged Infrastructure for optimal performance and efficiency for smooth functioning. Contents 1. Introduction 2. Role of MSPs in Deployment of HCI 3. Role of MSPs in HCI’s Management 4. Key Areas Where MSPs Help Drive Efficient HCI 4.1. Expert Deployment and Configuration 4.2. Proactive Monitoring and Management 4.3. Performance Optimization 4.4. Security and Compliance 4.5. Patch Management and Upgrades 4.6. Scalability and Flexibility 4.7. Cost Optimization 4.8. 24/7 Support and Incident Management 5. Takeaway 1. Introduction Fundamentally, a hyper-converged infrastructure comprises virtual computing, virtual hyperconverged network, and virtual SAB. However, deploying this infrastructure is a complex procedure that requires skill and attention. A managed service provider (MSP) can assist a business in implementing hyper-converged infrastructure. These are service providers that specialize in managing and maintaining hyper-converged infrastructure environments on behalf of businesses. They offer proactive monitoring, maintenance, and troubleshooting services to ensure optimal performance & availability and management excellence in HCI. 2. Role of MSPs in Deployment of HCI Managed service providers play a crucial role in the successful deployment of Hyperconverged Infrastructure. With their expertise and experience, MSPs assist businesses in planning and designing the optimal HCI solution tailored to their needs. They manage the integration of hardware and software components, ensuring compatibility and seamless integration into the existing IT infrastructure. MSPs handle data migration and transition, minimizing downtime and data loss. They also optimize performance by fine-tuning configurations and resource allocations to achieve optimal HCI operation. MSPs prioritize security and compliance, implementing robust measures to protect sensitive data and ensure regulatory compliance. They provide ongoing management and support, monitoring system health, performing maintenance, and addressing issues promptly. MSPs enable scalability and future-proofing, helping businesses scale their HCI environment as needed and ensuring flexibility for future technology advancements and changes in business requirements. Broadly, MSPs bring their specialized knowledge and services to navigate the complexities of HCI deployment, enabling businesses to maximize the benefits of this transformative HCI technology. 3. Role of MSPs in HCI’s Management Managed service providers play a crucial role in the effective management of HCI. MSPs offer a range of services to ensure the optimal performance and security of HCI environments. They proactively monitor and maintain the HCI infrastructure, identifying and addressing issues before they impact operations. MSPs specialize in performance optimization, fine-tuning configurations, and implementing load balancing techniques to maximize efficiency. They prioritize security and compliance by implementing robust measures and assisting with data backup and disaster recovery strategies. MSPs also assist with capacity planning and scalability, ensuring resources are efficiently allocated and businesses can adapt to changing demands. They provide 24/7 support, troubleshooting services, and comprehensive reporting and analytics for HCI management excellence. Additionally, MSPs handle vendor management, simplifying interactions with hardware and software providers. Overall, MSPs enable businesses to effectively manage their HCI environments, ensuring smooth operations, optimal performance, and security. 4. Key Areas Where MSPs Help Drive Efficient HCI Managed Service Providersplay a crucial role in driving deployment and management excellence in Hyperconverged Infrastructure (HCI) environments. HCI combines storage, compute, and networking into a single, software-defined platform, simplifying data center operations. Here's how MSPs contribute to HCI excellence: 1. Expert Deployment and Configuration MSPs possess deep expertise in HCI deployments. They understand the complexities of hardware, software, and networking integration required for optimal HCI implementation. MSPs ensure proper configuration, capacity planning, and performance tuning to maximize HCI efficiency and meet specific business needs. 2. Proactive Monitoring and Management MSPs provide proactive monitoring and management services, continuously monitoring the HCI environment to detect issues and resolve them before they impact performance or availability. They leverage advanced monitoring tools and technologies to monitor resource utilization, network connectivity, and storage performance, ensuring optimal HCI operation. 3. Performance Optimization MSPs specialize in fine-tuning HCI performance. They analyze workloads, assess resource requirements, and optimize configurations to ensure optimal performance and scalability. Through proactive capacity planning and performance optimization techniques, MSPs help businesses extract the maximum value from their HCI investment. 4. Security and Compliance MSPs prioritize security and compliance in HCI environments. They implement robust security measures, such as encryption, access controls, and threat detection systems, to protect critical data and ensure compliance with industry regulations. MSPs also assist businesses in implementing data backup and disaster recovery strategies to safeguard against potential data loss or system failures. 5. Patch Management and Upgrades MSPs handle patch management and upgrades in HCI environments. They ensure that the HCI platform stays up to date with the latest security patches and software updates, minimizing vulnerabilities and ensuring hyperconverged system stability. MSPs coordinate and execute seamless upgrades, minimizing disruptions and maintaining optimal HCI performance. 6. Scalability and Flexibility MSPs help businesses scale and adapt their HCI environments to meet changing demands. They assess growth requirements, optimize resource allocation, and implement expansion strategies to accommodate evolving business needs. MSPs enable businesses to scale their HCI infrastructure seamlessly without compromising performance or availability. 7. Cost Optimization MSPs assist in optimizing costs associated with HCI deployments. They evaluate resource utilization, identify inefficiencies, and implement cost-saving measures, such as workload consolidation and resource allocation optimization. MSPs help businesses achieve maximum return on investment by aligning HCI infrastructure with specific business objectives. 8. 24/7 Support and Incident Management MSPs offer round-the-clock support and incident management for HCI environments. They provide timely resolution of issues, minimizing downtime and ensuring continuous operation. MSPs also offer help desk services, ticket management, and proactive troubleshooting to address any challenges that arise in the HCI environment. 5. Takeaway The future of managed service providers is promising and dynamic. MSPs will continue to enhance their specialized expertise in HCI, offering comprehensive support for businesses' HCI environments. They will expand their services to include end-to-end managed hyperconverged solutions, covering deployment, ongoing management, performance optimization, and security. Automation and orchestration will play a significant role as MSPs leverage these technologies to streamline operations and improve efficiency. MSPs will also focus on strengthening security and compliance measures, integrating HCI with cloud services, and continuously innovating to stay ahead in the HCI landscape. Broadly, MSPs will be vital partners for businesses seeking to maximize the benefits of HCI while ensuring smooth operations and staying competitive in the digital era. MSPs in HCI offer specialized expertise, managed services, automation, AI-driven analytics, enhanced security and compliance, integration with hyper converged cloud services, and continuous innovation. Their services will cover the entire lifecycle of HCI, from deployment to ongoing management and optimization. MSPs will leverage automation and AI technologies to streamline operations, enhance security, and provide proactive monitoring and maintenance. They will assist businesses in integrating HCI with cloud services, ensuring scalability and flexibility. MSPs will continuously innovate to adapt to emerging technologies and industry trends, supporting businesses in harnessing the full potential of HCI and achieving their digital transformation goals.

Read More
Application Infrastructure

Advancing 5G with cloud-native networking and intelligent infrastructure

Article | December 15, 2021

The success of 5G technology is a function of both the infrastructure that supports it and the ecosystems that enable it. Today, the definitive focus in the 5G space is on enterprise use cases, ranging from dedicated private 5G networks to accessing edge compute infrastructure and public or private clouds from the public 5G network. As a result, vendor-neutral multitenant data center providers and their rich interconnection capabilities are pivotal in helping make 5G a reality. This is true both in terms of the physical infrastructure needed to support 5G and the ability to effectively connect enterprises to 5G. Industry experts expect 5G to enable emerging applications such as virtual and augmented reality (AR/VR), industrial robotics/controls as part of the industrial internet of things (IIoT), interactive gaming, autonomous driving, and remote medical procedures. These applications need a modern, cloud-based infrastructure to meet requirements around latency, cost, availability and scalability. This infrastructure must be able to provide real-time, high-bandwidth, low-latency access to latency-dependent applications distributed at the edge of the network. How Equinix thinks about network slicing Network slicing refers to the ability to provision and connect functions within a common physical network to provide the resources necessary to deliver service functionality under specific performance constraints (such as latency, throughput, capacity and reliability) and functional constraints (such as security and applications/services). With network slicing, enterprises can use 5G networks and services for a wide variety of use cases on the same infrastructure. Providing continuity of network slices with optimal UPF placement and intelligent interconnection Mobile traffic originates in the mobile network, but it is not contained to the mobile network domain, because it runs between the user app on a device and the server workload on multi-access edge compute (MEC) or on the cloud. Therefore, to preserve intended characteristics, the slice must be extended all the way to where the traffic wants to go. This is why we like to say “the slicing must go on.” The placement of network functions within the slice must be optimized relative to the intended traffic flow, so that performance can be ensured end-to-end. As a result, organizations must place or activate the user plane function (UPF) in optimal locations relative to the end-to-end user plane traffic flow. We expect that hybrid and multicloud connectivity will remain a key requirement for enterprises using 5G access. In this case, hybrid refers to private edge computing resources (what we loosely call “MEC”) located in data centers—such as Equinix International Business Exchange™ (IBX®) data centers—and multicloud refers to accessing multiple cloud providers from 5G devices. To ensure both hybrid and multicloud connectivity, enterprises need to make the UPF part of the multidomain virtual Layer 2/Layer 3 interconnection fabric. Because a slice must span multiple domains, automation of UPF activation, provisioning and virtual interconnection to edge compute and multicloud environments is critical. Implementing network slicing for interconnection of core and edge technology Equinix partnered with Kaloom to develop network slicing for interconnection of core and edge (NICE) technology within our 5G and Edge Technology Development Center (5G ETDC) in Dallas. NICE technology is built using cloud-native network fabric and high-performance 5G UPF from Kaloom. This is a production-ready software solution, running on white boxes built with P4 programmable application-specific integrated circuits (ASICs), allowing for deep network slicing and support for high-performance 5G UPF with extremely fast data transfer rates. With NICE technology in the 5G ETDC, Equinix demonstrates: 5G UPF deployment/activation and traffic breakout at Equinix for multiple slices. Software-defined interconnection between the 5G core and MEC resources from multiple providers. Software-defined interconnection between the 5G core and multiple cloud service providers. Orchestration of provisioning and automation of interconnection across the 5G core, MEC and cloud resources. Architecture of NICE technology in the Equinix 5G ETDC The image above shows (from left to right): The mobile domain with radio access network (RAN), devices (simulated) and mobile backhaul connected to Equinix. The Equinix domain with: Equinix Metal® supporting edge computing servers and a fabric controller from Kaloom. Network slicing fabric providing interconnection and Layer 2/Layer 3 cloud-native networking to dynamically activate UPF instances/interfaces connected with MEC environments and clouds, forming two slices (shown above in blue and red). Equinix Fabric™ and multicloud connectivity. This demonstrates the benefit of having the UPF as a feature of the interconnection fabric, effectively allowing UPF activation as part of the virtual fabric configuration. This ultimately enables high-performance UPF that’s suitable for use cases such as high-speed 5G fixed wireless access. Combining UPF instances and MEC environments into an interconnection fabric makes it possible to create continuity for the slices and influence performance and functionality. Equinix Fabric adds multicloud connectivity to slices, enabling organizations to directly integrate network slicing with their mobile hybrid multicloud architectures. Successful private 5G edge deployments deliver value in several ways. Primarily, they offer immediate access to locally provisioned elastic compute, storage and networking resources that deliver the best user and application experiences. In addition, they help businesses access a rich ecosystem of partners to unlock new technologies at the edge. Secure, reliable connectivity and scalable resources are essential at the edge. A multivendor strategy with best-of-breed components complemented by telemetry, advanced analytics with management and orchestration—as demonstrated with NICE in Equinix data centers—is a most effective way to meet those requirements. With Equinix’s global footprint of secure, well-equipped facilities, customers can maximize benefits.” - Suresh Krishnan, CTO, Kaloom Equinix and its partners are building the future of 5G NICE technology is just one example of how the Equinix 5G and Edge Technology Development Center enables the innovation and development of real-world capabilities that underpin the edge computing and interconnection infrastructure required to successfully implement 5G use cases. A key benefit of the 5G ETDC is the ability to combine cutting-edge innovations from our partners like Kaloom with proven solutions from Equinix that already serve a large ecosystem of customers actively utilizing hybrid multicloud architectures.

Read More

Spotlight

CHAMS PLC

Chams PLC is Nigeria's leading identity management and transaction payments systems solution provider. Starting off as a privately owned business in 1985, we have evolved from computer and hardware maintenance to providing enterprise technology solutions in the identity management and transaction payments space to public and private sector institutions.

Related News

Poly Introduces the Next Generation of Savi Wireless Headsets

Poly | September 18, 2019

Plantronics, Inc. (“Poly” – formerly Plantronics and Polycom) (NYSE: PLT), a global communications company that powers meaningful human connection and collaboration, today announced the next generation of the company’s lineup of popular Savi wireless headsets. The enhanced Savi Office and UC Series will offer more wearing styles, plus features to help with working in noisy office environments. “People will always need the ability to focus,” said Tamara Lane, director of product marketing, personal solutions, of Poly. “Open offices facilitate collaboration which is great for group problem-solving, but we all have our moments when we need to focus independently. The challenge is staying in the zone despite the buzz around you. We’ve updated our Savi 8200 Office and UC Series headsets to better address these needs.”

Read More

See What People are Saying about the Poly Studio USB Video Bar

Poly | November 13, 2019

“The Polycom Studio is fantastic because it gives organisations access to the flexible huddle room environments they need, without asking them to deal with complicated tools and technology. The Polycom Studio is a powerful piece of equipment, but it’s not complicated or daunting. Unlike other solutions on the market today, it’s designed to simply fade into the background, providing support you can rely on, without the complexity.” Polycom Studio offers several advanced features that set it apart from competing, similarly priced products, such as active speaker tracking and background noise suppression. Polycom Studio is, in fact, dead simple to install. Audio quality was outstanding. Video quality was equally good. It brings surprisingly powerful conferencing tools to any room that has a monitor/tv and a computer. Under $1000, it’s an excellent solution for any organization needing access to video conferencing

Read More

Poly Introduces Poly Studio X Series for Microsoft Teams at Microsoft Ignite 2019

Poly | November 04, 2019

Plantronics, Inc. (“Poly” – formerly Plantronics and Polycom) (NYSE: PLT), a global communications company that powers meaningful human connection and collaboration, will introduce video conferencing devices with a built-in Microsoft Teams experience at Microsoft Ignite 2019. The Poly Studio X Series, purpose-built, all-in-one video bars for Microsoft teams, will offer a native Teams meeting and calling experience and are among a host of Poly solutions built for Teams that the company will demonstrate at the show. The Poly Studio X Series consists of two new video bars designed for small rooms, the Poly Studio X30 and Poly Studio X50. The Poly Studio X Series are purpose-built appliances that will run the Teams application natively. The Studio X Series supports 4K Ultra high definition (UHD), advanced noise suppression and unmatched video production rules to improve all aspects of the meeting experience. Users can choose to control the Studio X Series with the new Poly TC8 touch screen.

Read More

Poly Introduces the Next Generation of Savi Wireless Headsets

Poly | September 18, 2019

Plantronics, Inc. (“Poly” – formerly Plantronics and Polycom) (NYSE: PLT), a global communications company that powers meaningful human connection and collaboration, today announced the next generation of the company’s lineup of popular Savi wireless headsets. The enhanced Savi Office and UC Series will offer more wearing styles, plus features to help with working in noisy office environments. “People will always need the ability to focus,” said Tamara Lane, director of product marketing, personal solutions, of Poly. “Open offices facilitate collaboration which is great for group problem-solving, but we all have our moments when we need to focus independently. The challenge is staying in the zone despite the buzz around you. We’ve updated our Savi 8200 Office and UC Series headsets to better address these needs.”

Read More

See What People are Saying about the Poly Studio USB Video Bar

Poly | November 13, 2019

“The Polycom Studio is fantastic because it gives organisations access to the flexible huddle room environments they need, without asking them to deal with complicated tools and technology. The Polycom Studio is a powerful piece of equipment, but it’s not complicated or daunting. Unlike other solutions on the market today, it’s designed to simply fade into the background, providing support you can rely on, without the complexity.” Polycom Studio offers several advanced features that set it apart from competing, similarly priced products, such as active speaker tracking and background noise suppression. Polycom Studio is, in fact, dead simple to install. Audio quality was outstanding. Video quality was equally good. It brings surprisingly powerful conferencing tools to any room that has a monitor/tv and a computer. Under $1000, it’s an excellent solution for any organization needing access to video conferencing

Read More

Poly Introduces Poly Studio X Series for Microsoft Teams at Microsoft Ignite 2019

Poly | November 04, 2019

Plantronics, Inc. (“Poly” – formerly Plantronics and Polycom) (NYSE: PLT), a global communications company that powers meaningful human connection and collaboration, will introduce video conferencing devices with a built-in Microsoft Teams experience at Microsoft Ignite 2019. The Poly Studio X Series, purpose-built, all-in-one video bars for Microsoft teams, will offer a native Teams meeting and calling experience and are among a host of Poly solutions built for Teams that the company will demonstrate at the show. The Poly Studio X Series consists of two new video bars designed for small rooms, the Poly Studio X30 and Poly Studio X50. The Poly Studio X Series are purpose-built appliances that will run the Teams application natively. The Studio X Series supports 4K Ultra high definition (UHD), advanced noise suppression and unmatched video production rules to improve all aspects of the meeting experience. Users can choose to control the Studio X Series with the new Poly TC8 touch screen.

Read More

Events